Mosquito
 (Diptera: Diolinassein interion Alaska: No sign of

 decline:2003-2018ALASKA
 Derek Sikes

Introduction

* Insects are vital to ecosystems

Global Declines in Insect Biomass:

- Seasonal decline of 76% in flying insect biomass over 27 years in Germany (Hallman et al. 2017).
- Muscid abundance at Greenland field site declined 80% over 18 years (Loboda et al. 2018)
- Are similar declines in flying insects occurring in interior Alaska?
- Current data

Methods

- Gary Newman, a citizen Scientist of Fairbanks, donated 11 annual catches of his Mosquito Magnet CO² traps
- Seasonally from first sighting to decline
- 1083 Esro Rd, Fairbanks (64.907039ํ. $\mathrm{N}, 147.482958^{\circ} \mathrm{W}$ [WGS84])
- Boreal forest/wetland habitat
- Each year stored in plastic gallon bags
- Bag variance

Weight (initial)		Weight (2nd: bags)	Weight (3rd: dry)	
2003	21.42	18.66	18.19	
2004	51.3	48.92	47.11	
2006	46.99	45.54	43.93	
2011	30.47	26.24	25.25	
2012	49.46	45.8	43.54	
2013	82.36	77.53	72.93	
2014	119.11	114.01	109.71	
2015	56.39	51.57	48.1	
2016	33.02	30.67	29.25	
2017	30.63	29.22	28.06	
2018	32.39	29.06	28	

- Bag weight:
- Initial, new bags and dry

Table 1. Observed weights of culicids during three processing stages (Units: grams).

VWi Sciontific

WEIGHT VS TIME

Results

- Are similar declines of flying insects occurring in Alaska? - Not among mosquitoes in Fairbanks
- Correlating USGS data
- Decrease in mass at every weighing stage

Figure 1. Weights of culicids through time. Symbols and colors indicate each recorded mass

- Slope analysis

Analysis of Variance Results

```
F-statistic value = NaN
```

```
P-value = 1
```

Groups	\mathbf{N}	Mean
Group 1	1	0.7521
Group 2	1	0.6146
Group 3	1	0.6822

ANOVA Summary							
Source	Degrees of Freedom	Sum of Squares	Mean Square				
F-Stat	P-Value						
Between Groups	DF	SS	MS				

Table 2. Analysis of Slope Significance. Initial, control bags, and dry weights of Culicids indicated by Group 1, 2, and 3 respectively.

Analysis of Variance Results

Results

- Methodological question: What's the best way to measure biomass?
- Standardized bags \& dry weights
- No significant difference between weights and bags of stages

Table 3. Initial, control bags, and dry weights of culicids indicated by Group 1, 2, and 3 respectively.

Discussion

- Trends appear to display a stable population of culicids in Fairbanks
- Long term study (15 yrs) but only 1 site and 1 trap
- Moth wings found in years 03 04 and 06
- No clear signs of decline between 03-18
- Need for more citizen science

Thank you!

\square Acknowledgements:
Gary Newman, Elizabeth Hinkle, Jeff Falke

References

- Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., De Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 12(10) doi:10.1371/journal.pone. 0185809
\square Jourdan, J., Baranov, V., Wagner, R., Plath, M., \& Haase, P. (2019). Elevated temperatures translate into reduced dispersal abilities in a natural population of an aquatic insect. Journal of Animal Ecology, 88(10), 1498-1509. doi:10.1111/1365-2656.13054
\square Kendrick, M. R., \& Huryn, A. D. (2014). The Plecoptera and Trichoptera of the arctic north slope of alaska. Western North American Naturalist, 74(3), 275-285. doi:10.3398/064.074.0303
\square Loboda, S., Savage, J., Buddle, C. M., Schmidt, N. M., \& Høye, T. T. (2018). Declining diversity and abundance of high arctic fly assemblages over two decades of rapid climate warming. Ecography, 41 (2), 265-277. doi:10.1111/ecog. 02747
- Sánchez-Bayo, F., \& Wyckhuys, K. A. G. (2019). Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27. doi:10.1016/j.biocon.2019.01.020c

